Automata-based representations play an important role in control and planning in sequential decision-making, but obtaining high-level task knowledge for building automata is often difficult. Although large-scale generative language models (GLMs) can help automatically distill task knowledge, the textual outputs from GLMs are not directly utilizable in sequential decision-making. We resolve this problem by proposing a novel algorithm named GLM2FSA, which obtains high-level task knowledge, represented in a finite state automaton (FSA), from a given brief description of the task goal. GLM2FSA sends queries to a GLM for task knowledge in textual form and then builds a FSA to represent the textual knowledge. This algorithm fills the gap between text and automata-based representations, and the constructed FSA can be directly utilized in sequential decision-making. We provide examples to demonstrate how GLM2FSA constructs FSAs to represent knowledge encoded in the texts generated by the large-scale GLMs.
translated by 谷歌翻译
Learning linear temporal logic (LTL) formulas from examples labeled as positive or negative has found applications in inferring descriptions of system behavior. We summarize two methods to learn LTL formulas from examples in two different problem settings. The first method assumes noise in the labeling of the examples. For that, they define the problem of inferring an LTL formula that must be consistent with most but not all of the examples. The second method considers the other problem of inferring meaningful LTL formulas in the case where only positive examples are given. Hence, the first method addresses the robustness to noise, and the second method addresses the balance between conciseness and specificity (i.e., language minimality) of the inferred formula. The summarized methods propose different algorithms to solve the aforementioned problems, as well as to infer other descriptions of temporal properties, such as signal temporal logic or deterministic finite automata.
translated by 谷歌翻译
我们考虑使用人解剖模型来解释黑盒系统的时间行为的问题。为此,根据最近的研究趋势,我们依靠确定性有限自动机(DFAS)和线性时间逻辑(LTL)公式的基本但可解释的模型。与学习DFA和LTL公式的大多数现有作品相反,我们仅依靠积极的例子。我们的动机是,通常很难从黑盒系统中观察到负面例子。为了仅从积极的示例中学习有意义的模型,我们设计了依赖于模型作为正规化器的简洁性和语言最小性的算法。为此,我们的算法采用了两种方法:一种符号和反例引导。尽管符号方法利用语言最小值作为约束满意度问题的有效编码,但反例引入的人依靠生成合适的负面示例来修剪搜索。两种方法都为我们提供了有效的算法,并在学习模型上具有理论保证。为了评估我们的算法的有效性,我们在合成数据上评估了所有算法。
translated by 谷歌翻译